
Linux Kernel Seminar Linux Kernel Seminar Linux Kernel Seminar Linux Kernel Seminar Linux Kernel Seminar Linux Kernel Seminar Linux Kernel Seminar Linux Kernel Seminar Series:Series:Series:Series:Series:Series:Series:Series:

InterruptsInterruptsInterruptsInterruptsInterruptsInterruptsInterruptsInterrupts and Exceptionsand Exceptionsand Exceptionsand Exceptionsand Exceptionsand Exceptionsand Exceptionsand Exceptions

Jeffery A. KuehnJeffery A. Kuehn

Future Technologies / Scientific ComputingFuture Technologies / Scientific Computing

Oak Ridge National LaboratoryOak Ridge National Laboratory

2

OverviewOverview

�� Introduction to Interrupts and ExceptionsIntroduction to Interrupts and Exceptions

�� The Role of Interrupts and ExceptionsThe Role of Interrupts and Exceptions

�� Interrupts & ExceptionsInterrupts & Exceptions

�� Nested Execution of Exception and Interrupt Nested Execution of Exception and Interrupt

HandlersHandlers

�� Initializing the Interrupt Descriptor TableInitializing the Interrupt Descriptor Table

�� Exception HandlingException Handling

�� Interrupt HandlingInterrupt Handling

�� SoftIRQs, Tasklets, and WorkqueuesSoftIRQs, Tasklets, and Workqueues

Commonalities between Commonalities between

Interrupts and ExceptionsInterrupts and Exceptions

�� Generated by the hardwareGenerated by the hardware

– vs. UNIX signals

�� Alter (divert) the sequence of instructionsAlter (divert) the sequence of instructions

– Diversion is similar to context switch (See chap 3)

– Execution diverted to a “handler”

• Not a process – lighter weight

• Just a control path in the kernel

• Executes from the diverted process's context

• Think: handler == function

– Email/Telephone/Visitor analogy

Differences: ExceptionsDifferences: Exceptions

�� SynchronousSynchronous

– Related to the diverted process

– Internal to current thread of control

– After the instruction terminates

– May post a UNIX signal with the diverted process

�� Think:Think:

– internal to CPU (mostly)

– Device “nudges” itself

Exceptions: a closer lookExceptions: a closer look

�� Come in several flavorsCome in several flavors

– Processor Detected Exceptions

• Faults

• Traps

• Aborts

– Programmed Exceptions

�� Each type of exception is assigned a Each type of exception is assigned a ““vectorvector””

– An 8 bit unsigned int (0-255) to identify it

�� May send a UNIX signal to the diverted processMay send a UNIX signal to the diverted process

Processor Detected Exceptions: Processor Detected Exceptions:

FaultsFaults

�� Correction required Correction required

– Ex: page fault must load a page

�� Execution can continueExecution can continue

– Saved EIP is instruction which caused fault

– Program can resume execution at saved EIP

�� ExamplesExamples

– Floating Point Error – divide by zero

– General Protection Fault – one of the protection rules

has been violated

– Page Fault – more in Chapter 8

Processor Detected Exceptions: Processor Detected Exceptions:

TrapsTraps

�� Correction not requiredCorrection not required

�� Execution can continueExecution can continue

– Saved EIP is next instruction to execute

– Mainly for debugging

�� ExampleExample

– bound – generate exception conditional on address

bound

– into – the instruction used to check for an integer

overflow generates this exception if the overflow flag

has been set

Processor Detected Exceptions: Processor Detected Exceptions:

AbortsAborts

�� Correction not possibleCorrection not possible

�� Execution cannot continueExecution cannot continue

– EIP may be incorrect

– Serious error, we're wedged

�� ExamplesExamples

– Machine Check – CPU or bus hardware errors

– Double fault – trying to handle the exception has

generated an exception

– Coprocessor segment overrun (386/387 only)

Programmed ExceptionsProgrammed Exceptions

�� Exceptions generated by special instructionsExceptions generated by special instructions

�� Handled as traps (indistinguishable...)Handled as traps (indistinguishable...)

– Correction not required

– Execution can continue

– Saved EIP is next instruction to execute

�� Examples:Examples:

– int – system call

– int3 – breakpoint (debugger inserts)

Differences: InterruptsDifferences: Interrupts

�� AsynchronousAsynchronous

– Often unrelated to diverted process

�� External to current thread of controlExternal to current thread of control

– Ex: I/O device requesting attention

�� arbitrary arrival time relative to instruction streamarbitrary arrival time relative to instruction stream

�� Think:Think:

– external to CPU (mostly)

– One device “nudges” another for attention

Interrupts: A closer lookInterrupts: A closer look

• Maskable Interrupts

– Current execution state: masked

or unmasked

– CPU ignores until unmasked

– examples:

• Interrupt Requests (IRQs)

issued by I/O devices

• Timer Interrupts

• Interprocessor Interrupts

• Non-Maskable Interrupts

(NMIs)

– Cannot be ignored

– Critical hardware failures

� Each type of interrupt is assigned an 8 bit unsigned int (0-255)

� This is called an interrupt “vector”

� Sitting at your desk:

� Notification of email arriving is a maskable interrupt

� TZ walking into your office is a non-maskable interrupt

There's a magic device....There's a magic device....

�� (Advanced) Programmable Interrupt Controller(Advanced) Programmable Interrupt Controller

�� Monitors the IRQ lines on the bus for raised (electrical) Monitors the IRQ lines on the bus for raised (electrical)

signalssignals

�� When one or more IRQs are raised:When one or more IRQs are raised:

• decides which will be handled first

• Converts the IRQ to be serviced into an interrupt vector

• Selects CPU to service the interrupt

• Store vector in PIC I/O port where CPU can read it

• Issues interrupt to selected CPU's interrupt line

– ie. raise INTR pin

• Waits for CPU to acknowledge by writing into one of the PIC's I/O

ports

• Clears interrupt line

Old Magic: PICs Old Magic: PICs –– Intel 8259AIntel 8259A

�� Could monitor 8 IRQ linesCould monitor 8 IRQ lines

– Two cascaded could monitor 15 (orig PC)

�� If multiple interrupts posted simultaneouslyIf multiple interrupts posted simultaneously

– lowest pin number was highest priority and handled first

�� Default vector association for IRQn was n+32 Default vector association for IRQn was n+32 –– could be modifiedcould be modified

�� Each IRQ can be selectively enabled/disabledEach IRQ can be selectively enabled/disabled

– This is not global masking/unmasking

• When masked, PIC still issues interrupts

• CPU just ignores them temporarily

– Disabled interrupts are not lost

• Passed to CPU when re-enabled

– Used by handlers to allow serial processing of interrupts of the same type

�� Okay for single CPU, but not SMPsOkay for single CPU, but not SMPs

New Magic: PICs for SMPsNew Magic: PICs for SMPs

�� Local APIC (LAPIC) built into each CPULocal APIC (LAPIC) built into each CPU

�� I/O APIC for each external I/O busI/O APIC for each external I/O bus

– System can have many I/O APICs

�� APICs connected via Interrupt Controller APICs connected via Interrupt Controller

Communication (ICC) busCommunication (ICC) bus

– Mostly invisible to software

New magic: Local APICNew magic: Local APIC

�� Built into CPUBuilt into CPU

�� 32 bit registers32 bit registers

– Task Priority Register (TPR)

• set by OS during process switch

�� ClockClock

�� TimerTimer

�� 2 additional local IRQ lines2 additional local IRQ lines

– Reserved for local interrupts

New magic: External I/O APICNew magic: External I/O APIC

�� Programmable Registers & Message UnitProgrammable Registers & Message Unit

�� 24 IRQ lines24 IRQ lines

�� 2424--entry Interrupt Redirection Tableentry Interrupt Redirection Table

– translate IRQ line to an ICC bus message to one or more LAPICS

– Each table entry contains

• Interrupt Vector

• Programmable priority – not tied to pin number

• Programmable service processor selection method

• Programmable Destinations

– Translates IRQ line into a message to one or more LAPICS

Service processor selection Service processor selection

method details for I/O Interrupts method details for I/O Interrupts

�� Static distributionStatic distribution

– specific CPU

– Specific Subset of CPUs

– all CPUs at once (bcast)

�� Dynamic distributionDynamic distribution

– Check current TPR values on LAPICs

– Assign service to CPU executing lowest priority task

(+arbitration)

Interrupt Descriptor TableInterrupt Descriptor Table

�� System tableSystem table

– 256 descriptor entries

– 2048 bytes total

– idtr register holds base/limit

– idtr initialized by lidt instruction

�� Three types of descriptor entriesThree types of descriptor entries

– 8 bytes (64 bits) each

– Intel Task gate descriptor

– Intel Interrupt gate descriptor

– Intel Trap gate descriptor

�� Associates each interrupt or exception vector with address Associates each interrupt or exception vector with address

of corresponding handlerof corresponding handler

Intel Task Gate DescriptorIntel Task Gate Descriptor

�� 4 bit Type field 4 bit Type field

�� 2 bit Descriptor Privilege Level (DPL) field2 bit Descriptor Privilege Level (DPL) field

�� 16 bit Task State Segment (TSS) selector of the 16 bit Task State Segment (TSS) selector of the

process which will take control when an interrupt process which will take control when an interrupt

occursoccurs

�� Used to deliver Used to deliver ““Double FaultDouble Fault”” interruptsinterrupts

Intel Interrupt Gate DescriptorIntel Interrupt Gate Descriptor

�� 4 bit Type field4 bit Type field

�� 2 bit Descriptor Privilege Level (DPL) field2 bit Descriptor Privilege Level (DPL) field

�� 48 bit Address of handler48 bit Address of handler

– segment selector + offset

�� Clears Clears IFIF flagflag

– disables maskable interrupts while transferring control

�� Used for most interrupt handlersUsed for most interrupt handlers

Intel Trap Gate DescriptorsIntel Trap Gate Descriptors

�� 4 bit Type field4 bit Type field

�� 2 bit Descriptor Privilege Level (DPL) field2 bit Descriptor Privilege Level (DPL) field

�� 48 bit Address of handler48 bit Address of handler

– segment selector + offset

– like interrupt gate

�� Doesn't modify IF flagDoesn't modify IF flag

�� Used for exception handlersUsed for exception handlers

How Linux Uses the Intel Gates(1)How Linux Uses the Intel Gates(1)

�� (Linux) Task Gate(Linux) Task Gate

• Activates “Double Fault” handler

• Privileged (Intel) Task gate (DPL=0 kernel mode)

• set_task_gate(n,GDT)

�� (Linux) Interrupt Gate(Linux) Interrupt Gate

• Activates all Linux interrupt handlers

• Privileged (Intel) Interrupt gate (DPL=0 kernel mode)

• set_intr_gate(n,addr)

�� (Linux) System Interrupt Gate(Linux) System Interrupt Gate

• Activates Linux exception handler for int3 instruction (breakpoint –

vector 3)

• Unprivileged (Intel) interrupt gate (DPL=3 user mode)

• set_system_intr_gate(n,addr)

How Linux Uses the Intel Gates(2)How Linux Uses the Intel Gates(2)

�� (Linux) Trap Gate(Linux) Trap Gate

• Activates most Linux exception handlers

• Privileged (Intel) trap gate (DPL=0 kernel mode)

• set_trap_gate(n,addr)

�� (Linux) System Gate(Linux) System Gate

• Activates Linux exception handlers for 3 instructions

– into (overflow check – vector 4)

– bound (address check – vector 5)

– int $0x80 (system call – vector 128)

• Unprivileged (Intel) trap gate (DPL=3 user mode)

• set_system_gate(n,addr)

Nested Execution of Handlers(1)Nested Execution of Handlers(1)

�� Kernel control paths can be arbitrarily nestedKernel control paths can be arbitrarily nested

– Exceptions can go 2 levels deep

• User – some exception – page fault

– Interrupts can go arbitrarily deep

• User – device1 – device2 – device3 ...

– Interrupt handlers can preempt exception handlers and other interrupt

handlers

• User – some exception – intr1 – intr2 – intr3 ...

– Exception handlers cannot preempt interrupt handlers (common

problem...)

�� Why?Why?

– Improve PIC service throughput (faster)

– Eliminates need for priority levels (simpler)

Nested Execution of Handlers(2)Nested Execution of Handlers(2)

�� Restrictions:Restrictions:

– Can be entered from user mode or kernel mode

– Must return to previous

– First task of any handler is save old context

– Last task of any handler is restore old context

– Handler must never block

• No process switches

• Handler must not attempt I/O or other blocking operations

• Not allowed to induce a page fault

– (which terminates with a process switch)

• Remember: interrupts are disabled!

Structure of an Structure of an

Exception HandlerException Handler

– Assembler Wrapper – low level handler

• Named “handler_name”

• Saves the previous context on entry

– Including switching stacks if necessary

• Sets up the current context for a C call

• Calls the high level C handler function

• Cleans up the current context after C call

• Restores previous context

– Including switching stacks if necessary

• returns to previous context

– C function – high level handler

• named “do_handler_name”

do_do_do_do_do_do_do_do_handler_namehandler_namehandler_namehandler_namehandler_namehandler_namehandler_namehandler_name()()()()()()()()

�� Std C function except args passed in registersStd C function except args passed in registers

�� Does all the heavy liftingDoes all the heavy lifting

– Always call notify_die()

• To check whether exception occurred in kernel mode

• Invalid system call arguments (chapter 10)

• Kernel bugs

– Invoke die() - prints CPU regs to console (kernel oops)

– Invoke do_exit() - terminates current process

– Typically calls do_trap() to

• Store HW error code/exception vector

• Send a (UNIX) signal to the process

– Handled immediately after exception handler terminates

– Returns (to wrapper)

�� See linux/arch/i386/kernel/traps.cSee linux/arch/i386/kernel/traps.c

do_do_do_do_do_do_do_do_handler_namehandler_namehandler_namehandler_namehandler_namehandler_namehandler_namehandler_name()()()()()()()()

#define DO_VM86_ERROR(trapnr, signr, str, name) #define DO_VM86_ERROR(trapnr, signr, str, name) \\

fastcall void do_##name(struct pt_regs * regs, long error_code) fastcall void do_##name(struct pt_regs * regs, long error_code) \\

{ { \\

if (notify_die(DIE_TRAP, str, regs, error_code, trapnr, signr) =if (notify_die(DIE_TRAP, str, regs, error_code, trapnr, signr) == NOTIFY_STOP) return; = NOTIFY_STOP) return; \\

do_trap(trapnr, signr, str, 1, regs, error_code, NULL); do_trap(trapnr, signr, str, 1, regs, error_code, NULL); \\

}}

#ifndef CONFIG_KPROBES#ifndef CONFIG_KPROBES

DO_VM86_ERROR(3, SIGTRAP, "int3", int3)DO_VM86_ERROR(3, SIGTRAP, "int3", int3)

#endif#endif

do_do_do_do_do_do_do_do_handler_namehandler_namehandler_namehandler_namehandler_namehandler_namehandler_namehandler_name()()()()()()()()

#define DO_ERROR(trapnr, signr, str, name) \

fastcall void do_##name(struct pt_regs * regs, long error_code) \

{ \

if (notify_die(DIE_TRAP, str, regs, error_code, trapnr, signr) == NOTIFY_STOP) return; \

do_trap(trapnr, signr, str, 0, regs, error_code, NULL); \

}

DO_ERROR(9, SIGFPE, "coprocessor segment overrun", coprocessor_segment_overrun)

DO_ERROR(10, SIGSEGV, "invalid TSS", invalid_TSS)

DO_ERROR(11, SIGBUS, "segment not present", segment_not_present)

DO_ERROR(12, SIGBUS, "stack segment", stack_segment)

do_do_do_do_do_do_do_do_handler_namehandler_namehandler_namehandler_namehandler_namehandler_namehandler_namehandler_name()()()()()()()()

#define DO_ERROR_INFO(trapnr, signr, str, name, sicode, siaddr) \

fastcall void do_##name(struct pt_regs * regs, long error_code) \

{ \

siginfo_t info; \

info.si_signo = signr; \

info.si_errno = 0; \

info.si_code = sicode; \

info.si_addr = (void __user *)siaddr; \

if (notify_die(DIE_TRAP, str, regs, error_code, trapnr, signr) == NOTIFY_STOP) return; \

do_trap(trapnr, signr, str, 0, regs, error_code, &info); \

}

DO_ERROR_INFO(6, SIGILL, "invalid opcode", invalid_op, ILL_ILLOPN, regs->eip)

DO_ERROR_INFO(17, SIGBUS, "alignment check", alignment_check, BUS_ADRALN, 0)

DO_ERROR_INFO(32, SIGSEGV, "iret exception", iret_error, ILL_BADSTK, 0)

do_do_do_do_do_do_do_do_handler_namehandler_namehandler_namehandler_namehandler_namehandler_namehandler_namehandler_name()()()()()()()()

#define DO_VM86_ERROR_INFO(trapnr, signr, str, name, sicode, sia#define DO_VM86_ERROR_INFO(trapnr, signr, str, name, sicode, siaddr) ddr) \\

fastcall void do_##name(struct pt_regs * regs, long error_code) fastcall void do_##name(struct pt_regs * regs, long error_code) \\

{ { \\

siginfo_t info; siginfo_t info; \\

info.si_signo = signr; info.si_signo = signr; \\

info.si_errno = 0; info.si_errno = 0; \\

info.si_code = sicode; info.si_code = sicode; \\

info.si_addr = (void __user *)siaddr; info.si_addr = (void __user *)siaddr; \\

if (notify_die(DIE_TRAP, str, regs, error_code, trapnr, signr) =if (notify_die(DIE_TRAP, str, regs, error_code, trapnr, signr) == NOTIFY_STOP) return; = NOTIFY_STOP) return; \\

do_trap(trapnr, signr, str, 1, regs, error_code, &info); do_trap(trapnr, signr, str, 1, regs, error_code, &info); \\

}}

DO_VM86_ERROR_INFO(0, SIGFPE, "divide error", divide_error, FPDO_VM86_ERROR_INFO(0, SIGFPE, "divide error", divide_error, FPE_INTDIV, regsE_INTDIV, regs-->eip)>eip)

Exception WrappersException Wrappers

�� See linux/arch/kernel/i386/kernel/entry.SSee linux/arch/kernel/i386/kernel/entry.S

ENTRY(overflow)

pushl $0

pushl $do_overflow

jmp error_code

ENTRY(bounds)

pushl $0

pushl $do_bounds

jmp error_code

ENTRY(invalid_op)

pushl $0

pushl $do_invalid_op

jmp error_code

...

error_code error_code error_code error_code error_code error_code error_code error_code –––––––– more assemblermore assemblermore assemblermore assemblermore assemblermore assemblermore assemblermore assembler

�� Same for all exceptions Same for all exceptions

– 35 lines of assembler

– Includes 2 function calls

• Stack fixer

• C handler function

�� Tasks:Tasks:

– Save the context

– Point esp to the right stack

– Copies HW error code (if any) onto the stack

– calls C handler function whose address is on the stack

– When it returns it jumps to ret_from_exception

arch/kernel/i386/kernel/entry.S:arch/kernel/i386/kernel/entry.S:arch/kernel/i386/kernel/entry.S:arch/kernel/i386/kernel/entry.S:arch/kernel/i386/kernel/entry.S:arch/kernel/i386/kernel/entry.S:arch/kernel/i386/kernel/entry.S:arch/kernel/i386/kernel/entry.S:error_codeerror_code

error_code:

pushl %ds

pushl %eax

xorl %eax, %eax

pushl %ebp

pushl %edi

pushl %esi

pushl %edx

decl %eax # eax = -1

pushl %ecx

pushl %ebx

cld

pushl %es

UNWIND_ESPFIX_STACK

popl %ecx

movl ES(%esp), %edi # get the function address

movl ORIG_EAX(%esp), %edx # get the error code

movl %eax, ORIG_EAX(%esp)

movl %ecx, ES(%esp)

movl $(__USER_DS), %ecx

movl %ecx, %ds

movl %ecx, %es

movl %esp,%eax # pt_regs pointer

call *%edi

jmp ret_from_exception

ret_from_exceptionret_from_exception

�� Same for all exceptions (& interrupts)Same for all exceptions (& interrupts)

�� A little more involved, but...A little more involved, but...

�� Tasks:Tasks:

– Clean up the stack

– Point esp to the right stack

– If previous context was user mode

• Restore previous (user) context and return

– Else, previous context was kernel mode

• If preemption is enabled

– need_resched? --> call preempt_schedule_irq

• Otherwise restore previous (kernel) context and return

ret_from_exceptionret_from_exception

/* Return to user mode is not as complex as all this

* looks, but we want the default path for a system

* call return to go as quickly as possible which is

* why some of this is less clear than it otherwise

* should be. */

ALIGN # userspace resumption stub

bypassing syscall exit tracing

ret_from_exception:

preempt_stop

ret_from_intr:

GET_THREAD_INFO(%ebp)

movl EFLAGS(%esp), %eax #
mix EFLAGS and CS

movb CS(%esp), %al

testl $(VM_MASK | 3), %eax

jz resume_kernel

ENTRY(resume_userspace)

cli # make sure we don't miss an

interrupt setting need_resched or

sigpending between sampling

and the iret

movl TI_flags(%ebp), %ecx
andl $_TIF_WORK_MASK, %ecx # is there

any work to be done on int/exception
return?

jne work_pending
jmp restore_all

#ifdef CONFIG_PREEMPT
ENTRY(resume_kernel)

cli
cmpl $0,TI_preempt_count(%ebp) # non-

zero preempt_count ?
jnz restore_nocheck

need_resched:
movl TI_flags(%ebp), %ecx # need_resched

set ?
testb $_TIF_NEED_RESCHED, %cl
jz restore_all
testl $IF_MASK,EFLAGS(%esp) #

interrupts off (exception path) ?
jz restore_all
call preempt_schedule_irq
jmp need_resched

#endif

Interrupt handling vs Exception Interrupt handling vs Exception

handlinghandling

�� Exceptions Exceptions

– Current process is responsible

– Mostly handled by posting a UNIX signal

– Defers action until signal is received

– Fast

�� InterruptsInterrupts

– Current process is probably unrelated

– Responsible process was likely suspended long ago

Three types of Interrupts Three types of Interrupts

�� Three main types of interruptsThree main types of interrupts

– Interprocessor interrupts

• Simple. Discuss first.

– I/O interrupts

• Complex. Discuss second.

– Timer interrupts

• Specialized. Discuss in Chapter 6.

�� Each will require different handling approachesEach will require different handling approaches

Structure of an Structure of an

Interprocessor Interrupt HandlerInterprocessor Interrupt Handler

�� Three kinds of interprocessor interrupts:Three kinds of interprocessor interrupts:

– CALL_FUNCTION_VECTOR (vector 0xfb)

• Force target CPUs to run function specified by sender

– RESCHEDULE_VECTOR (vector 0xfc)

• Forces target to rerun scheduler

– INVALIDATE_TLB_VECTOR (vector 0xfd)

• Forces target to invalidate their TLB

Interprocessor InterruptsInterprocessor Interrupts

�� Handled by LAPICHandled by LAPIC

– Write vector and target id to own LAPIC's Interrupt

Command Register (ICR)

– Sends message across ICC bus to target CPU's LAPIC

– Target CPU's LAPIC issues interrupt to its CPU

IPI Handler Tasks IPI Handler Tasks IPI Handler Tasks IPI Handler Tasks IPI Handler Tasks IPI Handler Tasks IPI Handler Tasks IPI Handler Tasks

�� Enter assembly wrapper (aka low level handler)Enter assembly wrapper (aka low level handler)

call_function_interrupt:

reschedule_interrupt:

invalidate_tlb_interrupt:

�� Save contextSave context

�� Push Push vectorvector--256 onto stack256 onto stack

�� Call C function handler (aka high level handler)Call C function handler (aka high level handler)

smp_call_function_interrupt()

smp_reschedule_interrupt()

smp_invalidate_tlb_interrupt()

– Acknowledge the interrupt

– Performs the requested action

• Note that smp_reschedule_interrupt() does nothing here – the resched is a side effect of exiting the

handler!

– Returns to wrapper (low level handler)

�� Restores previous context and returns... as seen on TVRestores previous context and returns... as seen on TV

– Identical to exceptions except for that extra cli instruction

Structure of an Structure of an

I/O Interrupt HandlerI/O Interrupt Handler

�� Handler breaks tasks into three classesHandler breaks tasks into three classes

– Critical tasks

• Acknowledging Interrupt to PIC

• Reprogramming PIC or device controller

• Updating data structures shared by processor & device

• Fast tasks like writing the ack to the PIC

• Performed in the “top half” with maskable interrupt disabled

– Non-critical tasks

• Updating data structures used only by the processor

• Fast tasks like looking up a keyscan code

• Setting up a softirq or tasklet to handle deferred tasks

• Performed in the “top half” with maskable interrupts enabled

– Non-critical Deferable tasks

• Slow tasks like copying buffers

• Performed (much) later as a softirq or tasklet

Four basic actions of anFour basic actions of an

I/O Interrupt Handler (cont)I/O Interrupt Handler (cont)

�� Save previous contextSave previous context

�� Acknowledge the interrupt to the PICAcknowledge the interrupt to the PIC

– Allows PIC to issue further interrupts

�� Call Call ALLALL interrupt service routines (ISRs) interrupt service routines (ISRs)

associated with the devices which share the IRQassociated with the devices which share the IRQ

�� Terminate and return to previous contextTerminate and return to previous context

I/O Interrupt Handler I/O Interrupt Handler

ImplementationImplementation

�� Back to linux/arch/i386/kernel/entry.SBack to linux/arch/i386/kernel/entry.S

�� Entry: Entry: irq_entries_startirq_entries_start::

– Push IRQ number onto stack

– Jump to common_interrupt:

�� common_interruptcommon_interrupt::

– Save the context

– copy IRQ number into eax

– Call do_IRQ()

• Executes all ISRs associated with the interrupt

– Call ret_from_intr: when do_IRQ() returns

Interrupt entry codeInterrupt entry code

/* Build the entry stubs and pointer

* table with some assembler magic.*/

.data

ENTRY(interrupt)

.text

vector=0

ENTRY(irq_entries_start)

.rept NR_IRQS

ALIGN

1: pushl $vector-256

jmp common_interrupt

.data

.long 1b

.text

vector=vector+1

.endr

ALIGN

common_interrupt:

SAVE_ALL

movl %esp,%eax

call do_IRQ

jmp ret_from_intr

do_IRQ() actions:do_IRQ() actions:

�� irq_enter()irq_enter() macro (linux/include/linux/hardirq.h)macro (linux/include/linux/hardirq.h)

– Account for system time

– increments nesting count in thread_info of current proc

�� Call Call __do_IRQ()__do_IRQ()

�� irq_exit()irq_exit() macromacro

– Decrements nesting count

– If not already in interrupt context, handle any pending

softirqs

– return

kernel/kernel/irq/handle.c:__do_IRQirq/handle.c:__do_IRQ() Tasks() Tasks

If there's a local interrupt

call its handler first

Locking not required

Lock IRQ descriptor

Acknowledge the interrupt

Mark it pending

If we can handle it now

mark it in_progress

If not, it's still pending

& someone will git-r-done

Loop:

Fire off the “non-critical” fast work

Unlock IRQ descriptor

Call handle_IRQ_event()

Lock IRQ descriptor

Check for another event on this
IRQ

If there's not another, break out

Clear the pending flag

Back to top

Call the end() handler to deal with
disabled interrupts arriving while this
handler was running

Unlock IRQ descriptor

return

handle_IRQ_event()handle_IRQ_event()

• Trivial: walk the linked
list containing pointers
to handler functions and
dispatch them

• Local IRQs are enabled
while the handlers run

• The action is part of the
device driver and will be
discussed later, but it
may help to glance at a
simple example...

fastcall int handle_IRQ_event(unsigned int irq, struct pt_regs
*regs, struct irqaction *action)

{
int ret, retval = 0, status = 0;
if (!(action->flags & SA_INTERRUPT))

local_irq_enable();
do {

ret = action->handler(irq, action->dev_id, regs);
if (ret == IRQ_HANDLED) status |= action->flags;
retval |= ret;
action = action->next;

} while (action);
if (status & SA_SAMPLE_RANDOM)

add_interrupt_randomness(irq);
local_irq_disable();
return retval;

}

Action example: floppy handlerAction example: floppy handler

irqreturn_t floppy_interrupt(int irq, void *dev_id, struct pt_regs *regs) {

void (*handler) (void) = do_floppy;

int do_print;

unsigned long f;

lasthandler = handler;

interruptjiffies = jiffies;

f = claim_dma_lock();

fd_disable_dma();

release_dma_lock(f);

floppy_enable_hlt();

do_floppy = NULL;

if (fdc >= N_FDC || FDCS->address == -1) {

/* we don't even know which FDC is the culprit */

printk("DOR0=%x\n", fdc_state[0].dor);

printk("floppy interrupt on bizarre fdc %d\n", fdc);

printk("handler=%p\n", handler);

is_alive("bizarre fdc");

return IRQ_NONE;

}

FDCS->reset = 0;

do_print = !handler && print_unex && !initialising;

inr = result();

if (do_print) print_result("unexpected interrupt", inr);

if (inr == 0) {

int max_sensei = 4;

do {

output_byte(FD_SENSEI);

inr = result();

if (do_print) print_result("sensei", inr);

max_sensei--;

} while ((ST0 & 0x83) != UNIT(current_drive) && inr == 2

&& max_sensei);

}

if (!handler) {

FDCS->reset = 1;

return IRQ_NONE;

}

schedule_bh(handler);

is_alive("normal interrupt end");

return IRQ_HANDLED;

}

Action example: floppy handlerAction example: floppy handler

�� Does 2.6 really have a top half / bottom half architecture?Does 2.6 really have a top half / bottom half architecture?

– No, not like older kernels (-2.4)

– But yes, the driver is still split

– Everything in the interrupt call tree above do_floppy() is “top half” ...

– do_floppy() points to the “bottom half” command

�� do_floppydo_floppy() () points to the most recently active command in the driverpoints to the most recently active command in the driver

�� different commands (functions) in the floppy device driver code:different commands (functions) in the floppy device driver code:

– do_floppy = main_command_interrupt;

– do_floppy = seek_interrupt;

– do_floppy = recal_interrupt;

– do_floppy = reset_interrupt;

�� schedule_bhschedule_bh()()

– Now uses schedule_work() to place Bottom Half (BH) on a workqueue for later
execution

– linux/kernel/workqueue.c

Action example: final lookAction example: final look

irqreturn_t floppy_interrupt(int irq, void *dev_id, struct pt_regs *regs) {

void (*handler) (void) = do_floppy;

int do_print;

unsigned long f;

lasthandler = handler;

interruptjiffies = jiffies;

f = claim_dma_lock();

fd_disable_dma();

release_dma_lock(f);

floppy_enable_hlt();

do_floppy = NULL;

if (fdc >= N_FDC || FDCS->address == -1) {

/* we don't even know which FDC is the culprit */

printk("DOR0=%x\n", fdc_state[0].dor);

printk("floppy interrupt on bizarre fdc %d\n", fdc);

printk("handler=%p\n", handler);

is_alive("bizarre fdc");

return IRQ_NONE;

}

FDCS->reset = 0;

do_print = !handler && print_unex && !initialising;

inr = result();

if (do_print) print_result("unexpected interrupt", inr);

if (inr == 0) {

int max_sensei = 4;

do {

output_byte(FD_SENSEI);

inr = result();

if (do_print) print_result("sensei", inr);

max_sensei--;

} while ((ST0 & 0x83) != UNIT(current_drive) && inr == 2 &&

max_sensei);

}

if (!handler) {

FDCS->reset = 1;

return IRQ_NONE;

}

schedule_bh(handler);

is_alive("normal interrupt end");

return IRQ_HANDLED;

}

1) Pick up the outstanding command from a static pointer

2) Reset the device

3) Clear the static command pointer

4) Schedule the command on a workqueue for later execution

5) Start returning back up the chain – top half complete!

SoftIRQs, Tasklets, and WorkqueuesSoftIRQs, Tasklets, and Workqueues

• Top half
– Must be fast

– Not deferrable

– Acknowledge the interrupt

– Schedule the “real” work

– Return to the user process

• Bottom half
– Can be slow

– Deferrable

– Do the “real” work
• At a convenient time

• Three methods for deferral
– Softirqs – appeared in 2.4 kernel

• No serialization

• Fastest

• All softirqs (even same type) run
concurrently

– Tasklets – appeared in 2.4 kernel
• Nothing to do with “tasks”

• Simpler interface to softirqs

• Based on softirqs

• Different types of tasklets run in
parallel

– Workqueues – new in 2.6 kernels
• Highest overhead

• Run in process context – can sleep

• Easiest to use

softirqssoftirqs

�� See linux/kernel/softirq.cSee linux/kernel/softirq.c

�� Statically allocated (32) at compile timeStatically allocated (32) at compile time

�� Can run concurrently on multiple CPUsCan run concurrently on multiple CPUs

– Even same the same type

�� Must be reMust be re--entrantentrant

– Must protect data structures from concurrent access with spinlocks

(expensive)

�� Six typesSix types

• HI_SOFTIRQ 0 – high priority tasklets

• TIMER_SOFTIRQ 1 – tasklets related to timers

• NET_TX_SOFTIRQ 2 – transmit packets to network

• NET_RX_SOFTIRQ 3 – receive packets from network

• SCSI_SOFTIRQ 4 – post-processing SCSI commands

• TASKLET_SOFTIRQ 5 – regular tasklets

TaskletsTasklets

�� See linux/kernel/softirq.cSee linux/kernel/softirq.c

�� Dynamically allocated during runtimeDynamically allocated during runtime

– Module load

�� Tasklets of different types can execute Tasklets of different types can execute

concurrently on multiple CPUsconcurrently on multiple CPUs

�� Tasklets of the same type are serializedTasklets of the same type are serialized

�� Tasklets need not be reTasklets need not be re--entrant or protect their entrant or protect their

data structuresdata structures

�� Implemented using softirqsImplemented using softirqs

Operations on softirqs and taskletsOperations on softirqs and tasklets

�� InitializationInitialization

– Define a new deferrable function, as during module load

�� ActivationActivation

– Mark a deferrable function as “pending”

– Execute next time kernel schedules deferrables

– Can be done any time, often by top half of interrupt handler

�� MaskingMasking

– Selectively disable a deferrable to prevent execution even if activated

(chapter 5)

�� ExecutionExecution

– Executes pending deferrable with other pending deferrables at “well-

specified” times

– Will execute on the same CPU that activated it

Softirq key data structuresSoftirq key data structures

/* linux/include/linux/interrupt.h/* linux/include/linux/interrupt.h

structstruct softirq_actionsoftirq_action { {

void (*action)(struct softirq_action *); /* function void (*action)(struct softirq_action *); /* function ptr */ptr */

void *data;void *data;

};};

/* linux/kernel/softirq.c *//* linux/kernel/softirq.c */

static struct softirq_action static struct softirq_action softirq_vec[32]softirq_vec[32] __cacheline_aligned_in_smp;__cacheline_aligned_in_smp;

�� A table of 32 structures containing pairs of function and data pA table of 32 structures containing pairs of function and data pointers ointers

• note only the first 6 are used

• softirq priority (0-5) is index into table

• HI_SOFTIRQ 0 – high priority tasklets

• TIMER_SOFTIRQ 1 – tasklets related to timers

• NET_TX_SOFTIRQ 2 – transmit packets to network

• NET_RX_SOFTIRQ 3 – receive packets from network

• SCSI_SOFTIRQ 4 – post-processing SCSI commands

• TASKLET_SOFTIRQ 5 – regular tasklets

Softirq key data structures (2)Softirq key data structures (2)

�� Recall that the handling of an interrupt can be interrupted by aRecall that the handling of an interrupt can be interrupted by an n

interrupt. How deep are we nested?interrupt. How deep are we nested?

�� current_thread_infocurrent_thread_info()()-->preempt_count>preempt_count fieldfield

– preemption counter (8bits)

• how many times have we disabled preemption on this CPU?

• 0 == preemption not explicitly disabled

– softirq counter (8bits)

• how many levels of deferral deep have we disabled

• 0 == deferrable functions enabled

– hardirq counter (12 bits)

– PREEMPT_ACTIVE flag (1bit)

�� Last two checked by Last two checked by in_interrupt()in_interrupt() macromacro

– Returns zero if both fields are zero

Softirq key data structures (3)Softirq key data structures (3)

�� Struct irq_cpustat_t's Struct irq_cpustat_t's __softirq_pending__softirq_pending fieldfield

– 32 bit mask of pending interrupts

– One struct per cpu

– Accessed by local_softirq_pending() macro

• Selects mask for local CPU

Activating softirqs with Activating softirqs with

raise_softirq()raise_softirq()raise_softirq()raise_softirq()raise_softirq()raise_softirq()raise_softirq()raise_softirq()

1)1) Save state and disable interrupts on local CPUSave state and disable interrupts on local CPU

– Performed by local_irq_save() macro

2)2) Mark softirq as pending Mark softirq as pending

– Set bit in __softirq_pending mask

3)3) If If in_interrupt()in_interrupt() returns 1 skip to step 5returns 1 skip to step 5

– Indicates either

• Softirqs are currently disabled, or

• raise_softirq() has been called in an interrupt context

4)4) If necessary, wake up local CPU's If necessary, wake up local CPU's ksoftirqdksoftirqd kernel threadkernel thread

– wakeup_softirqd()

– Restore state

– Performed by local_irq_restore() macro

Pending softirqsPending softirqs

�� Kernel checks for pending softirqs periodicallyKernel checks for pending softirqs periodically

– When local_bh_enable() is invoked

– When do_IRQ() finishes and invokes irq_exit()

– When smp_apic_timer_interrupt() finishes

• Only if we have an APIC

– When SMP CPU finishes function triggered by

CALL_FUNCTION_VECTOR IPI

– When one of the ksoftirqd/n threads wakes up

do_softirq() (finally!)do_softirq() (finally!)

�� Invoked to handle pending softirqs noted at checkpoints Invoked to handle pending softirqs noted at checkpoints

on previous slideon previous slide

�� tasks:tasks:

– Give up if in_interrupt() returns 1

• Either softirqs are disabled or one is already in progress

– Save state and disable interrupts with local_irq_save()

– Switch to interrupt stack (if necessary)

– Call __do_softirq()

– Restore stack (if necessary)

– Restore state and interrupts with local_irq_restore()

– return

__do_softirq() (arrrgh!)__do_softirq() (arrrgh!)

�� Reads the softirq bitmask on the local CPU Reads the softirq bitmask on the local CPU

– Each set bit corresponds to pending softirqs

– Executes the deferrables associated with every set bit

�� New New softirqssoftirqs can be posted as pending during can be posted as pending during

processingprocessing

– Loop to catch them

– Limited to 10 trips to avoid monopolizing the CPU

– User mode processes locked out during handling

�� If there are still pending softirq's after the 10If there are still pending softirq's after the 10thth trip, trip,

we wake up the ksoftirqd for this CPUwe wake up the ksoftirqd for this CPU

– Competes with user mode processes at low priority

__do_softirq() tasks__do_softirq() tasks

1)1) Initialize iteration counter to 10Initialize iteration counter to 10

2)2) Copy softirq bitmask of local CPU into local variable Copy softirq bitmask of local CPU into local variable pendingpending

3)3) Call Call local_bh_disable()local_bh_disable() [must execute serially][must execute serially]

4)4) Clear softirq bitmask of the local CPU so we can see if new softClear softirq bitmask of the local CPU so we can see if new softirqs arrive irqs arrive

while we're workingwhile we're working

5)5) Enable interrupts locally with Enable interrupts locally with local_irq_enable()local_irq_enable()

6)6) For every set bit in For every set bit in pendingpending, execute the function , execute the function softirq_vec[n]softirq_vec[n]-->action()>action()

7)7) Disable interrupts locally with Disable interrupts locally with local_irq_disable()local_irq_disable()

8)8) Copy the softirq bitmask into Copy the softirq bitmask into pendingpending againagain

9)9) If If pendingpending is nonis non--zero and we haven't exceeded our iteration count, jump zero and we haven't exceeded our iteration count, jump

back to step 4back to step 4

10)10)If there are more pending softirqs, call If there are more pending softirqs, call wakeup_softirqd()wakeup_softirqd()

11)11)Call Call local_bh_enable()local_bh_enable()

ksoftirqd/nksoftirqd/n

�� Kernel thread running at low priorityKernel thread running at low priority

�� One per CPUOne per CPU

�� Calls Calls do_softirq()do_softirq() while there are pending while there are pending

softirqssoftirqs

�� Competes with user mode processes, but doesn' t Competes with user mode processes, but doesn' t

lock them outlock them out

TaskletsTasklets

�� Built on two softirqsBuilt on two softirqs

– HI_SOFTIRQ

– TASKLET_SOFTIRQ

– Only difference is priority (HI_SOFTIRQ runs first)

�� Each softirq can have several taskletsEach softirq can have several tasklets

�� Tasklets are stored in two vectors:Tasklets are stored in two vectors:

– tasklet_vec[NR_CPUS]

– tasklet_hi_vec[NR_CPUS]

– Each element of the vectors is the head of a linked list of tasklet

descriptors

– do_irq() calls tasklet_hi_action() and tasklet_action()

• Remember: __do_softirq() really does the call...

• tasklet_hi_action() and tasklet_action() handle the serialization

Workqueues Workqueues

�� Unlike deferrable functions which run in an Unlike deferrable functions which run in an

interrupt context, workqueue tasks always run in interrupt context, workqueue tasks always run in

the process context of a kernel threadthe process context of a kernel thread

�� Like tasklets, the core of the workqueue is a Like tasklets, the core of the workqueue is a

linked list of functions to be executedlinked list of functions to be executed

�� Unlike deferrable functions, Unlike deferrable functions, queuetasksqueuetasks can blockcan block

– But it holds up the queue...

�� No access to a usermode address spaceNo access to a usermode address space

““jmpjmp ret_from_intrret_from_intr””

